

HPCBench Documentation

HPCBench is a Python package that allows you to specify and execute benchmarks. It provides:

	an API to describe how to execute benchmarks utilities and gather metrics.

	A way to describe benchmark campaigns in YAML format.

	command line utilities to execute your campaigns, and post-process generated metrics in
various ways:

	Merging metrics from different campaigns

	Exporting metrics in CSV format

	Exporting data to Elasticsearch

	PDF report generation

HPCBench assumes that the various benchmark tools/binaries are managed elsewhere and does
not provide features for building and maintaining benchmark software.

NB: This Python package is still in pre-alpha stage, and not suitable for production.

Installation

HPCBench is in the Python Package Index [http://pypi.python.org/pypi/hpcbench/].

Installation with pip

We recommend using pip [http://pypi.python.org/pypi/pip] to install hpcbench on all platforms:

$ python -m pip install hpcbench

To upgrade HPCBench with pip:

$ python -m pip install --upgrade hpcbench

Dependencies

HPCBench supports both python 2.7 and 3.4+.

Overview

CLI

The main interface through which HPCbench is used is a set of command
line utilities:

	ben-sh: Execute a tests campaign on your workstation

	ben-csv: Extract metrics of an existing campaign in csv format

	ben-umb: Extract metrics of an existing campaign

	ben-elastic: Push campaign data to Elasticsearch

	ben-nett: Execute a tests campaign on a cluster

	ben-merge: Merge campaign output directories

	ben-tpl: Generate HPCBench plugin scaffolds,
see usage for more information on plugin generation.

ben-sh and ben-nett expect a YAML file describing the campaign to execute.
The structure of this YAML file is detailed in the campaign file reference.

Campaign YAML description

	1. HPCBench Campaign file reference
	1.1. output_dir

	1.2. Network configuration reference

	1.3. Benchmarks configuration reference

	1.4. Benchmark configuration reference

	1.5. Precondition configuration reference

	1.6. Process configuration reference

	1.7. Global metas dictionary (optional)

	1.8. Environment variable expansion

	2. HPCBench Standard Benchmark
	2.1. A trivial example

	2.2. Metrics configuration reference

	2.3. Executables configuration reference

	2.4. Shells configuration reference

API

The purpose of the HPCBench API is to provide a consistent and unified layer:

	to execute, and parse results of existing benchmarks utilities (Linpack, IOR, …)

	to use extracted metrics to build figures

Both system benchmarks (e.g. STREAM, linpack), as well as software benchmarks should be
implemented using this API. Most users parametrize benchmarks in the above-mentioned
campaign YAML file. More advanced users will want to implement their own benchmarks based
on the API.

For more information check the module reference

Getting Started

As of now, only a few benchmarks are supported. This section assumes that
you have at least installed the sysbench utility on your workstation.

Launch a campaign on your workstation

Create your first campaign YAML file

Create a local-campaign.yaml file with the following content:

benchmarks:
 '*':
 test:
 type: sysbench

Launch the benchmark on your workstation

Execute the following command:

$ ben-sh local-campaign.yaml

This will create a hpcbench-<date> in the directory with the benchmark’s results.
Although the user is not meant to be manually checking results inside the output directory
at this point take a look at hpcbench-<date>/<hostname>/*/test/metrics.json. You will
find that this file contains the collected metrics data from sysbench. The raw logs and
stdout’s can be found further down the directory tree.

Note: Do not manually edit files inside the output directory. HPCBench offers a number of
utilities to export and post-process the collected results.

Launch a campaign on a set of nodes

The YAML config file is getting a little more complex. For instance create
the following remote-campaign.yaml:

network:
 nodes:
 - localhost
benchmarks:
 '*':
 test:
 type: sysbench

You can add computer nodes to the nodes section.

Launch the benchmark

Use the ben-nett utility to execute the campaign on every nodes.
It uses SSH to submit jobs so you have to make sure you can access those
nodes without passphrase. For this you could use the ssh_config_file key in YAML to
specify a custom configuration (see) campaign file reference):

$ ben-nett remote-campaign.yaml

How to create a new benchmark Python module?

It is possible to create your own benchmark based on a tool that has not been so far supported
by HPCBench. This is done by generating an external plugin scaffold using ben-tpl and
implementing the benchmark execution and metrics parsing inside the generated classes.

Here is the basic workflow:

	
	First create a default JSON file describing the Python module:

	ben-tpl benchmark -g config.json

	Update fields in config.json

	
	Generate the Python module template in the current directory:

	ben-tpl benchmark config.json

	Edit the benchmark.py file

	When ready you can install the module, with pip for instance.

Development Guide

Prerequisites

Docker

Elasticsearch [https://www.elastic.co/products/elasticsearch] is required to execute
some of the unit-tests. The easiest way to accomplish this, is to use Docker containers.

Quick’n’dirty Docker installation:

$ curl -fsSL get.docker.com -o get-docker.sh
$ sh get-docker.sh
$ curl -L https://github.com/docker/compose/releases/download/1.15.0/docker-compose-`uname -s`-`uname -m` > /usr/local/bin/docker-compose
$ chmod +x /usr/local/bin/docker-compose

Post-installation instructions to use Docker without root privileges (logout/login) required:

$ sudo groupadd docker
$ sudo usermod -aG docker $USER

Test your docker installation with:

$ docker run --rm hello-world

Build instructions

Grab the source code:

$ git clone https://github.com/BlueBrain/hpcbench.git
$ cd hpcbench

We suggest you use a dedicated virtual environment. For that you can use
either virtualenv [https://virtualenv.pypa.io/en/stable/] package or
pyenv [https://github.com/pyenv/pyenv], which is even better.

With pyenv:

$ pyenv virtualenv hpcbench
$ pyenv local hpcbench

Alternatively, with virtualenv:

$ virtualenv .env
$. .env/bin/activate

Then:

$ pip install tox
$ tox -e py27

tox is configured to test HPCBench against different Python versions. To test against a
specific python version you can supply it the -e parameter:

$ tox -e py27 --
$ tox -e py36 --

The --tests parameter can be used to run only one specific unit test module or class:

$ tox -e py36 -- --tests tests/test_driver.py

Elasticsearch

To start an Elasticsearch container, you can use the
misc/dc script wrapper on top of docker-compose:

$ misc/dc up -d

It will start an Elasticsearch container listening on port 9200 and a Kibana
instance listening on port 5612.

Let’s now try to ping Elasticsearch:

$ curl localhost:9200
{
 "name" : "jQ-BcoF",
 "cluster_name" : "elasticsearch",
 "cluster_uuid" : "yGP7_Q2gSU2HmHpnQB-jzg",
 "version" : {
 "number" : "5.5.1",
 "build_hash" : "19c13d0",
 "build_date" : "2017-07-18T20:44:24.823Z",
 "build_snapshot" : false,
 "lucene_version" : "6.6.0"
 },
 "tagline" : "You Know, for Search"
}

You can also access Kibana at http://localhost:5601
The Dev Tools is one of the most handy Elasticsearch client for humans.

Testing it all out

Unit-tests assume that Elasticsearch is running on localhost.
You can define the UT_ELASTICSEARCH_HOST environment variable to specify
another location:

$ ELASTICSEARCH_HOST=server01:9200 tox

How to integrate a new benchmark utility in the HPCBench repository?

	First make sure you can properly build the project and tests pass successfully.
It may be tempting to skip this part, but please don’t.

	Create a dedicated Git branch.

	Create a new Python module in hpcbench/benchmark directory named after the
utility to integrate.

	In this new module, implement hpcbench.api.Benchmark and
hpcbench.MetricsExtractor classes.

	Register the new module in setup.py [hpcbench.benchmarks] entrypoint
so that it can be found by HPCBench.

	Create a dedicated unit test class in tests/benchmark/ directory.
The purpose of this test is to make sure that:
* your Benchmark class is properly defined, and usable by HPCBench.
* your metric extractor is properly working, without having to launch the

utility itself.

	To properly test your metrics extractors, some outputs of the benchmark utility
will be added to the repository. For every category of your benchmark, create a
file title tests/benchmark/<test_module_name>.<category>.stdout with the
benchmark utility’s output. These files will be automatically used.
Do not hesitate to take inspiration from the tests/benchmark/test_sysbench.py
test module.

	Run the test-suites until it passes:

$ tox

	Submit a pull-request [https://github.com/BlueBrain/hpcbench]

LICENSE

This software is released under MIT License.

Indices and tables

	Index

	Module Index

	Search Page

1. HPCBench Campaign file reference

HPCBench uses a YAML file
(see YAML cookbook [http://yaml.org/YAML_for_ruby.html])
to describe a benchmark campaign.
Topics of this reference page are organized by top-level key
to reflect the structure of the Campaign file itself.

1.1. output_dir

This top-level attribute specifies the output directory
where HPCBench stores the benchmark results.
The default value is “hpcbench-%Y%m%d-%H%M%S”
You can also specify some variables enclosed in braces, specifically:

	node: value of ben-sh “-n” option.

This also includes environment variables (prefixed with $).
For instance for a daily report with the node name inside
the directory, you can use: “hpcbench-{node}-$USER-%Y%m%d”

1.2. Network configuration reference

A Campaign is made of a set of nodes that will be benchmarked. Those nodes
can be tagged to create groups of nodes. The tags are used to constrain
benchmarks to be run on subsets of nodes.

1.2.1. nodes

Specify which nodes are involved in the tests campaign.
Here is an sample describing a cluster of 2 nodes.

network:
 nodes:
 - srv01
 - srv02
 - gpu-srv01
 - gpu-srv02

Nodes can also be specified using the
ClusterShell [http://clustershell.readthedocs.io/en/latest/tools/nodeset.html#usage-basics]
NodeSet syntax. For instance

network:
 nodes:
 - srv[0-1,42,060-062]

is equivalent to:

network:
 nodes:
 - srv0
 - srv2
 - srv42
 - srv060
 - srv061
 - srv062

1.2.2. tags

Specify groups of nodes.

A tag can be defined with an explicit node list, a regular expression of node names,
a recursive to other tags, or a SLURM constraint.

For instance, given the set of nodes defined above, we can define the
cpu and gpu tags as follow:

network:
 nodes:
 - srv01
 - srv02
 - gpu-srv01
 - gpu-srv02
 tags:
 cpu:
 nodes:
 - srv1
 - srv2
 gpu:
 match: gpu-.*
 all-cpus:
 constraint: skylake
 all:
 tags: [cpu, gpu]

All methods are being used:

	nodes expects an exhaustive list of nodes. The
ClusterShell [http://clustershell.readthedocs.io/en/latest/tools/nodeset.html#usage-basics]
NodeSet syntax is also supported.

	match expects a valid regular expression

	tags expects a list of tag names

	constraint expects a string. This tag does not references node
names explicitly but instead delegates it to SLURM. The value of the
constraint tag is given to the sbatch options through the
–constraint option.

1.2.3. cluster

If value is “slurm”, then the network nodes is filled based on the output
of the info command. A tag will be also added for every
(partition, feature) tuple formatted like this: {partition}_{feature}.

1.2.4. slurm_blacklist_states

List of SLURM node states used to filter-out nodes when cluster option
is set to slurm. Default states are down, drained, draining, error,
fail, failing, future, maint, and reserved.

1.2.5. ssh_config_file

Optional path to a custom SSH configuration file (see man ssh_config(5)).
This can be used to provide HPCBench access to cluster nodes without passphrase
by using a dedicated SSH key.

For instance:

Host *.my-cluster.com
User hpc
IdentityFile ~/.ssh/hpcbench_rsa

1.2.6. remote_work_dir

Working path on remote nodes. Default value is .hpcbench
Relative paths are relative from home directory.

1.2.7. installer_template

Jinja template to use to generate the shell-script installer
deployed on cluster’s nodes. Default value is ssh-installer.sh.jinja

1.2.8. installer_prelude_file

Optional path to a text file that will be included at the beginning
of the generated shell-script installer.
This can be useful to prepare the working environment, for instance to make
Python 2.7, or Python 3.3+ available in PATH environment variable if this
is not the case by default.

1.2.9. max_concurrent_runs

Number of concurrent benchmarks executed in parallel in the cluster.
Default is 4.

1.2.10. pip_installer_url

HPCBench version to install on nodes. By default it is the current ben-nett
version managing the cluster. This is an argument given to pip installer, here are a some examples:

	hpcbench==2.0 to force a version available PyPi

	git+http://github.com/BlueBrain/hpcbench@master#egg=hpcbench to install the bleeding edge version.

	git+http://github.com/me/hpcbench@feat/awesome-feature#egg=hpcbench to deploy a fork’s branch.

1.3. Benchmarks configuration reference

The benchmarks section specifies benchmarks to execute
on every tag.

	key: the tag name or “*”. “*” matches all nodes described
in the network.nodes section.

	value: a dictionary of name -> benchmark description.

benchmarks:
 cpu:
 test_cpu:
 type: sysbench
 '*':
 check_ram
 type: random_ram_rw

1.3.1. Tag specific sbatch parameters

When running in SLURM mode a special sbatch dictionary can be used.
This dictionary will be used when generating the sbatch file specific to this tag, allowing
parameters to be overwritten.

process:
 type: slurm
 sbatch:
 time: 01:00:00
 tasks-per-node: 1

benchmarks:
 cpu:
 sbatch:
 hint: compute_bound
 tasks-per-node: 16
 test_cpu:
 type: sysbench

1.4. Benchmark configuration reference

Specify a benchmark to execute.

1.4.1. type

Benchmark name.

benchmarks:
 cpu:
 test_cpu:
 type: sysbench

1.4.2. attributes (optional)

kwargs* arguments given to the benchmark Python class constructor to
override default behavior, which is defined in the benchmark class.

benchmarks:
 gpu:
 test_gpu:
 type: sysbench
 attributes:
 features:
 - gpu

1.4.3. exec_prefix (optional)

Command prepended to every commands spawned by the tagged benchmark. Can
be either a string or a list of string, for instance:

benchmarks:
 cpu:
 mcdram:
 exec_prefix: numactl -m 1
 type: stream

1.4.4. srun (optional)

When hpcbench is run in srun or slurm benchmark execution mode, this key roots a list of
options, which are passed to the srun command. Note that only the long form
option names should be used (i.e. –nodes instead of -N). These options overwrite
the global options provided in the process section. To disable
a global srun option simply declare the option without providing a value. if an option without
value (e.g. –exclusive) is to be used in srun, the key should be assigned to true.

benchmarks:
 cpu:
 osu:
 srun:
 nodes: 8
 ntasks-per-node: 36
 hint:
 exclusive: true
 type: osu

1.4.5. spack (optional)

Dictionary to specify spack related configuration. Supported attributes are:

	specs: list of spack specs to install before executing benchmarks.
bin directory of install directories are be prepended to PATH.

For instance:

benchmarks:
 '*':
 test01:
 type: stream
 spack:
 specs:
 - stream@intel+openmp

1.4.6. attempts (optional)

Dictionary to specify the number of times a command must be executed before
retrieving its results. Those settings allow benchmark execution on warm caches.
Number of times can be either specified statically or dynamically.

The static way to specify the number of times a command is executed is through
the fixed option.

benchmarks:
 '*':
 test01:
 type: stream
 attempts:
 fixed: 2

All executions are present in the report but only metrics of the last run are reported. The
sorted key allows to change this behavior to reorder the runs according to criteria.

benchmarks:
 '*':
 test01:
 type: imb
 attempts:
 fixed: 5
 sorted:
 sql: metrics__latency
 reverse: true

sql can be a string or a list of string in kwargsql format. They are used to
sort hpcbench.yaml reports. reverse is optional and allows to reverse the sort order.
In this example, the report with the smallest latency is picked.

The dynamic way allows you to execute the same command over and over again
until a certain metric converges. The convergence condition is either fixed
with the epsilon parameter or relative with percent.

benchmarks:
 '*':
 test01:
 type: stream
 attempts:
 metric: bandwidth
 epsilon: 50
 maximum: 5

Every commands of the stream benchmark will be executed:

	as long as the difference of bandwidth metric between two consecutive
runs is above 50.

	at most 5 times

benchmarks:
 '*':
 test01:
 type: stream
 attempts:
 metric: bandwidth
 percent: 10
 maximum: 5

Every commands of the stream benchmark will be executed:

	as long: abs(bandwidth(n) - bandwidth(n - 1)) < bandwidth(n) * percent / 100

	at most 5 times

1.4.7. environment (optional)

A dictionary to add environment variables.
Any boolean values; true, false, yes not, need to be enclosed in quotes to ensure
they are not converted to python True or False values by the YAML parse.
If specified, this section supersedes environment variables
emitted by benchmark.

benchmarks:
 '*':
 test_cpu:
 type: sysbench
 environment:
 TEST_ALL: 'true'
 LD_LIBRARY_PATH: /usr/local/lib64

1.4.8. modules (optional)

List of modules to load before executing the command.
If specified, this section supersedes modules emitted by benchmark.

1.4.9. cwd (optional)

Specifies a custom working directory.

1.5. Precondition configuration reference

This section specifies conditions to filter benchmarks execution.

benchmarks:
 '*':
 cpu_numactl_0:
 exec_prefix: [numctl, -m, 0]
 type: stream
 cpu_numactl_1:
 exec_prefix: [numctl, -m, 1]
 type: stream
 disk:
 type: mdtest
precondition:
 cpu_numactl_0: HPCBENCH_MCDRAM
 cpu_numactl_1:
 - HPCBENCH_MCDRAM
 - HPCBENCH_CACHE

	cpu_numactl_0 benchmark needs the HPCBENCH_MCDRAM environment
variable to be defined for being executed.

	cpu_numactl_1 benchmark needs either HPCBENCH_MCDRAM or
HPCBENCH_CACHE environment variables to defined for being executed.

	disk benchmark will be executed in all cases.

1.6. Process configuration reference

This section specifies how ben-sh execute the benchmark commands.

1.6.1. type (optional)

A string indicating the execution layer. Possible values are:

	local (default) directs HPCbench to spawn child processes where ben-sh
is running.

	slurm will use SLURM [https://slurm.schedmd.com] mode. This will cause HPCBench
to generate for each tag in the network, which is used by at least one benchmark, one sbatch
file. The batch file is then submitted to the scheduler. By default this batch file will invoke
hpcbench on the allocated nodes and execute the benchmarks for this tag.

	srun will use srun [https://slurm.schedmd.com/srun.html] to launch the benchmark
processes. When HPCBench is being executed inside the self-generated batch script, it will
use by default the srun mode to run the benchmarks.

1.6.2. commands (optional)

This dictionary allows setting alternative srun or sbatch commands or absolute paths to
the binaries.

process:
 type: slurm
 commands:
 sbatch: /opt/slurm/bin/sbatch
 srun: /opt/slurm/bin/sbatch

1.6.3. srun and sbatch (optional)

The srun and sbatch dictionaries provide configurations foe the respective SLURM
commands.

process:
 type: slurm
 sbatch:
 account: users
 partition: über-cluster
 mail-type: ALL
 srun:
 mpi: pmi2

1.6.4. executor_template (optional)

Override default Jinja template used to generate
shell-scripts in charge of executing benchmarks.
Default value is:

#!/bin/sh
{%- for var, value in environment.items() %}
export {{ var }}={{ value }}
{%- endfor %}
cd "{{ cwd }}"
exec {{ " ".join(command) }}

If value does not start with shebang, then it is considered
like a file location.

1.7. Global metas dictionary (optional)

If present at top-level of YAML file, content of metas dictionary
will be merged with those from every execution (see
hpcbench.api.Benchmark.execution_context)
Those defined in execution_context take precedence.

1.8. Environment variable expansion

Your configuration options can contain environment variables. HPCBench uses the
variable values from the shell environment in which ben-sh is run.
For example, suppose the shell contains EMAIL=root@cscs.ch and you supply this configuration:

process:
 type: slurm
 sbatch:
 email=$EMAIL
 partition=über-cluster

When you run ben-sh with this configuration, HPCBench will look for the EMAIL
environment variable in the shell and substitutes its value in.

If an environment variable is not set, substitution fails and an exception is raised.

Both $VARIABLE and ${VARIABLE} syntax are supported. Additionally, it is possible
to provide inline default values using typical shell syntax:

${VARIABLE:-default} will evaluate to default if VARIABLE is unset or empty in the environment.
${VARIABLE-default} will evaluate to default only if VARIABLE is unset in the environment.
${#VARIABLE} will evaluate to the length of the environment variable.
Other extended shell-style features, such as ${VARIABLE/foo/bar}, are not supported.

You can use a $$ (double-dollar sign) when your configuration needs a literal dollar sign.
This also prevents HPCBench from interpolating a value, so a $$ allows you to
refer to environment variables that you don’t want processed by HPCBench.

2. HPCBench Standard Benchmark

The “standard” benchmark is a general purpose benchmark.
Its configuration is passed thru the attributes field in the
YAML campaign file.

It is made of 3 top attributes, each of one being a dictionary:

	metrics: specifies how to extract information from command output

	executables: describe the commands to execute

	shells (optional): provide more flexibility to build the commands to execute

2.1. A trivial example

Before getting into all the details, here’s a basic standard benchmark configuration to get
started with:

benchmarks:
 '*':
 simple:
 type: standard
 attributes:
 executables:
 - command: ["echo", "42"]
 metrics:
 the_answer_to_everything:
 match: "(.*)"
 type: Cardinal

2.2. Metrics configuration reference

This section specifies the metrics the benchmark has to extract from
command outputs, as dictionary “name” -> “configuration”

A metric configuration is a dictionary made of the following keys:

2.2.1. match

The regular expression used to extract the value from the program execution
output. The expression must specify one and only one group used to extract
the proper value.

The string to match has trailing whitespace removed.

2.2.2. type

The metric type, as specified in the hpcbench.API.Metric

2.2.3. multiply_by (optional)

If any, the extracted value will be multiplied by the specified value. It is
useful to convert a unit, for instance from flop to Gflop.

2.2.4. category (optional)

The benchmark category the metric applies to. Default is standard.

2.2.5. from (optional)

Specifies the output file to look for. Default is stdout.

2.2.6. when (optional)

Provides a way to override fields above according to the metas of the executed command.
Conditions may be declared as a list, the first condition evaluated to true providing
a given property is used.

A condition is a dictionary composed of the following attributes:

	conditions: a dictionary of “meta_name” -> “value” where value is either a value of a list
of values.

	match, multiply_by, from (optional): provide value that supersedes default one if conditions
above are met.

For instance:

benchmarks:
 '*':
 my-test:
 type: standard
 attributes:
 metrics:
 simulation_time:
 match: "\\s+total compute time:\\s(\\d*\\.?\\d+) \\[ms\\]"
 type: Second
 multiply_by: 0.001
 when:
 -
 conditions:
 compiler: [gcc, icc]
 branch: feat/bump-performance
 match: "\\s+total pool clone time:\\s(\\d*\\.?\\d+) \\[ms\\]"
 multiply_by: 1.0

This example describes how the simulation_time metric has to be extracted and computed.
In the general case:

	the regular expression used to extract the metric is the
“… total compute time” expression

	The type of the metrics is Metric.Second

	The extracted value will by multiplied by 0.001

But when the compiler metas is either “gcc” or “icc” and when the
branch meta is “feat/bump_performance”:

	the regular expression is different

	the multiplication factor is 1

2.3. Executables configuration reference

This section specifies the commands the benchmark has to execute. It is made of a list
of dictionaries. Each dictionary describes a set of commands to run. They are
composed of the following keys:

2.3.1. command

Describes the command to launch. It must be a list of elements. Elements
support the Python Format Specification Mini-Language [https://docs.python.org/2/library/string.html#format-specification-mini-language] where the possible attributes are the metas
describe below.

2.3.2. metas

A list of dictionary or the dictionary itself if this is the only one.
Each dictionary describes a set of metas values.

executables:
-
 command: [echo, {foo}, {bar}]
 metas:
 -
 foo: 1
 bar: [2, 3]
 - foo: [4, 5]
 bar: [6, 7]

Using a list of values allows you to describe a combination of commands. In the example above, it means
launching 6 commands:

	echo 1 2

	echo 1 3

	echo 4 6

	echo 4 7

	echo 5 6

	echo 5 7

It is possible to specify several metas at once:

executables:
-
 command: [echo, {foo}, {bar}]
 metas:
 -
 foo: 1
 bar: [2, 3]
 - "foo, bar": [[4, 6], [5, 7]

This sample is equivalent to the previous.

Some functions can also be called to specify the list of values a meta can take, among:

	range, same as Python range builtin

	linspace, geomspace, linspace, arange, same as NumPy corresponding functions.

	correlate, to specify multi metas at once.

In this case, the meta description is a dictionary providing the following attributes:

	function: name of the function to call

	args: optional list of arguments given to the function

	kwargs: optional dictionary of keywords arguments given to the function

For instance:

executables:
-
 command: [echo, {foo}, {bar}]
 metas:
 -
 foo: 1
 bar:
 function: range
 args: [2, 4]

Will launch the 2 commands:

	echo 1 2

	echo 1 3

The correlate signature is as follow:
* a mandatory list of series given in the args section
* 2 optional arguments: explore and with_overflow

A serie is made of a list of arguments givento a NumPY function
returning the values the meta has to take, for instance:

[geomspace, 32, 1, num=6]

allowed functions are: geomspace, logspace, linspace,
arange
an additional _cast=<type> allows you to cast the result of the NumPy
function, for instance: [geomspace, 32, 1, num=6, _cast=int]

For example:

executables:
-
 command: [mycommand, -p, {processes}, -t, {threads}]
 metas:
 -
 "[processes, threads]":
 function: correlate
 args:
 - [geomspace, 8, 1, num=4, _cast=int]
 - [geomspace, 1, 8, num=4, _cast=int]

Will launch the following 4 commands:

	mycommand -p 8 -t 1

	mycommand -p 4 -t 2

	mycommand -p 2 -t 4

	mycommand -p 1 -t 8

The explore optional argument allows you to test additional
combinations by modifying every combinations by given matrices

For example:

executables:
-
 command: [mycommand, -p, {processes}, -t, {threads}]
 metas:
 -
 "[processes, threads]":
 function: correlate
 args:
 - [geomspace, 4, 1, num=3, _cast=int]
 - [geomspace, 1, 4, num=3, _cast=int]
 kwargs:
 explore:
 - [0, 1]

Will launch the following 8 commands:

	mycommand -p 4 -t 1

	mycommand -p 2 -t 2

	mycommand -p 1 -t 4

	mycommand -p 4 -t 2

	mycommand -p 2 -t 3

If the optional boolean with_overflow keyword argument was set to
True, then an additional (1, 1) command would have been triggered,
corresponding to the initiual (1, 4) combination plus (1, 1) matrix.
Instead of having (1, 5), the first value of the threads serie
would had been used, resulting in the (1, 1) value.
Because such combination is usually pointless, the with_overflow
default value is False.

2.3.3. category (optional)

A category to ease classification. Default value is “standard”.

2.4. Shells configuration reference

This sections describes a list of commands that may prefix the commands specified in the executables
section. It is composed of a list of dictionary. Each dictionary is made of the following keys:

2.4.1. commands

A list of shell commands, for instance

shells:
- commands:
 - . /usr/share/lmod/lmod/init/bash
 - . $SPACK_ROOT/share/spack/setup-env.sh
 - spack install myapp@{branch} %{compiler}
 - spack load myapp@{branch} %{compiler}

Specified commands also support the Python Format Specification Mini-Language [https://docs.python.org/2/library/string.html#format-specification-mini-language] to use
the metas of execution context. Those metas can be either those define in the shells or
executables section.

2.4.2. metas

Provides either a list of a dictionary providing additional metas values or
the dictionary itself if this is the sole dictionary. Like in the executables section,
it describes a combination of metas.

shells:
- commands:
 - . /usr/share/lmod/lmod/init/bash
 - . $SPACK_ROOT/share/spack/setup-env.sh
 - spack install myapp@{branch} %{compiler}
 - spack load myapp@{branch} %{compiler}
 metas:
 compiler: [gcc, icc]

 Python Module Index

 h

 		 	

 		
 h	

 	
 	
 hpcbench	

Index

 H

H

 	
 	hpcbench (module)

hpcbench package

hpcbench.api module

hpcbench

	hpcbench package
	hpcbench.api module

 _static/up.png

nav.xhtml

 Table of Contents

 		
 HPCBench Documentation

 		
 HPCBench Campaign file reference

 		
 output_dir

 		
 Network configuration reference

 		
 nodes

 		
 tags

 		
 cluster

 		
 slurm_blacklist_states

 		
 ssh_config_file

 		
 remote_work_dir

 		
 installer_template

 		
 installer_prelude_file

 		
 max_concurrent_runs

 		
 pip_installer_url

 		
 Benchmarks configuration reference

 		
 Tag specific sbatch parameters

 		
 Benchmark configuration reference

 		
 type

 		
 attributes (optional)

 		
 exec_prefix (optional)

 		
 srun (optional)

 		
 spack (optional)

 		
 attempts (optional)

 		
 environment (optional)

 		
 modules (optional)

 		
 cwd (optional)

 		
 Precondition configuration reference

 		
 Process configuration reference

 		
 type (optional)

 		
 commands (optional)

 		
 srun and sbatch (optional)

 		
 executor_template (optional)

 		
 Global metas dictionary (optional)

 		
 Environment variable expansion

 		
 HPCBench Standard Benchmark

 		
 A trivial example

 		
 Metrics configuration reference

 		
 match

 		
 type

 		
 multiply_by (optional)

 		
 category (optional)

 		
 from (optional)

 		
 when (optional)

 		
 Executables configuration reference

 		
 command

 		
 metas

 		
 category (optional)

 		
 Shells configuration reference

 		
 commands

 		
 metas

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

